Type of volcanic rock

Basalt

Basalt (UK: /ˈbæsɔːlt, -əlt/; US: /bəˈsɔːlt, ˈbeɪsɔːlt/) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90% of all volcanic rock on Earth is basalt. Rapid-cooling, fine-grained basalt is chemically equivalent to slow-cooling, coarse-grained gabbro. The eruption of basalt lava is observed by geologists at about 20 volcanoes per year. Basalt is also an important rock type on other planetary bodies in the Solar System. For example, the bulk of the plains of Venus, which cover ~80% of the surface, are basaltic; the lunar maria are plains of flood-basaltic lava flows; and basalt is a common rock on the surface of Mars.

Molten basalt lava has a low viscosity due to its relatively low silica content (between 45% and 52%), resulting in rapidly moving lava flows that can spread over great areas before cooling and solidifying. Flood basalts are thick sequences of many such flows that can cover hundreds of thousands of square kilometres and constitute the most voluminous of all volcanic formations.

Basaltic magmas within Earth are thought to originate from the upper mantle. The chemistry of basalts thus provides clues to processes deep in Earth's interior

Definition and characteristics

Basalt is composed mostly of oxides of silicon, iron, magnesium, potassium, aluminum, titanium,and calcium. Geologists classify igneous rock by its mineral content whenever possible, with the relative volume percentages of quartz (crystalline silica (SiO2)), alkali feldspar, plagioclase, and feldspathoid (QAPF) being particularly important. An aphanitic (fine-grained) igneous rock is classified as basalt when its QAPF fraction is composed of less than 10% feldspathoid and less than 20% quartz, with plagioclase making up at least 65% of its feldspar content. This places basalt in the basalt/andesite field of the QAPF diagram. Basalt is further distinguished from andesite by its silica content of under 52%.

It is often not practical to determine the mineral composition of volcanic rocks, due to their very fine grain size, and geologists then classify the rocks chemically, with the total content of alkali metal oxides and silica (TAS) being particularly important. Basalt is then defined as volcanic rock with a content of 45% to 52% silica and not more than 5% alkali metal oxides. This places basalt in the B field of the TAS diagram. Such a composition is described as mafic.

Basalt is usually dark grey to black in colour, due to its high content of augite or other dark-coloured pyroxene minerals, but can exhibit a wide range of shading. Some basalts are quite light-coloured due to a high content of plagioclase, and these are sometimes described as leucobasalts. Lighter basalt can be difficult to distinguish from andesite, but a common rule of thumb, used in field research, is that basalt has a color index of 35 or greater.

The physical properties of basalt reflect its relatively low silica content and typically high iron and magnesium content. The average density of basalt is 2.9 g/cm3, compared with a typical density for granite of 2.7 g/cm3. The viscosity of basaltic magma is relatively low, around 104 to 105 cP, although this is still many orders of magnitude higher than water (which has a viscosity of about 1 cP). The viscosity of basaltic magma is similar to that of ketchup.

Basalt is often porphyritic, containing larger crystals (phenocrysts) formed prior to the extrusion that brought the magma to the surface, embedded in a finer-grained matrix. These phenocrysts usually are of augite, olivine, or a calcium-rich plagioclase, which have the highest melting temperatures of the typical minerals that can crystallize from the melt and are therefore the first to form solid crystals.

Basalt often contains vesicles, formed when dissolved gases bubble out of the magma as it decompresses during its approach to the surface, and the erupted lava then solidifies before the gases can escape. When vesicles make up a substantial fraction of the volume of the rock, the rock is described as scoria.

The term basalt is at times applied to shallow intrusive rocks with a composition typical of basalt, but rocks of this composition with a phaneritic (coarser) groundmass are more properly referred to as diabase (also called dolerite) or, when more coarse-grained (crystals over 2 mm across), as gabbro. Diabase and gabbro are thus the hypabyssal and plutonic equivalents of basalt

In the Hadean, Archean, and early Proterozoic eons of Earth's history, the chemistry of erupted magmas was significantly different from today's, due to immature crustal and asthenosphere differentiation. These ultramafic volcanic rocks, with silica (SiO2) contents below 45% are usually classified as komatiites.

Etymology

The word "basalt" is ultimately derived from Late Latin basaltes, a misspelling of Latin basanites "very hard stone", which was imported from Ancient Greek βασανίτης (basanites), from βάσανος (basanos, "touchstone"). The modern petrological term basalt describing a particular composition of lava-derived rock, originates from its use by Georgius Agricola in 1546 in his work De Natura Fossilium. Agricola applied "basalt" to the volcanic black rock beneath the Bishop of Meissen's Stolpen castle, believing it to be the same as the "basaniten" described by Pliny the Elder in AD 77 in Naturalis Historiae.

Types

On Earth, most basalt forms by decompression melting of the mantle.[26] The high pressure in the upper mantle (due to the weight of the overlying rock) raises the melting point of mantle rock, so that almost all of the upper mantle is solid. However, mantle rock is ductile (the solid rock slowly deforms under high stress). When tectonic forces cause hot mantle rock to creep upwards, the decrease of the pressure on the ascending rock can cause its melting point to drop enough for the rock to partially melt. This produces basaltic magma.

Decompression melting can occur in a variety of tectonic settings. These include continental rifts zones, at mid-ocean ridges, above hotspots, and in back-arc basins. Basalt is also produced in subduction zones, where mantle rock rises into a mantle wedge above the descending slab. Decompression melting in this setting is enhanced by further lowering of the melting point by water vapor and other volatiles released from the slab. Each such setting produces basalt with distinctive characteristics.

Morphology and textures

The shape, structure and texture of a basalt is diagnostic of how and where it erupted—for example, whether into the sea, in an explosive cinder eruption or as creeping pāhoehoe lava flows

Subaerial eruptions

Basalt that erupts under open air (that is, subaerially) forms three distinct types of lava or volcanic deposits: scoria; ash or cinder (breccia); and lava flows.

Basalt in the tops of subaerial lava flows and cinder cones will often be highly vesiculated, imparting a lightweight "frothy" texture to the rock. Basaltic cinders are often red, coloured by oxidized iron from weathered iron-rich minerals such as pyroxene.

ʻAʻā types of blocky cinder and breccia flows of thick, viscous basaltic lava are common in Hawaiʻi. Pāhoehoe is a highly fluid, hot form of basalt which tends to form thin aprons of molten lava which fill up hollows and sometimes forms lava lakes. Lava tubes are common features of pāhoehoe eruptions.

Basaltic tuff or pyroclastic rocks are less common than basaltic lava flows. Usually basalt is too hot and fluid to build up sufficient pressure to form explosive lava eruptions but occasionally this will happen by trapping of the lava within the volcanic throat and buildup of volcanic gases. Hawaiʻi's Mauna Loa volcano erupted in this way in the 19th century, as did Mount Tarawera, New Zealand in its violent 1886 eruption. Maar volcanoes are typical of small basalt tuffs, formed by explosive eruption of basalt through the crust, forming an apron of mixed basalt and wall rock breccia and a fan of basalt tuff further out from the volcano.

Amygdaloidal structure is common in relict vesicles and beautifully crystallized species of zeolites, quartz or calcite are frequently found.

Columnar basalt

During the cooling of a thick lava flow, contractional joints or fractures form.  If a flow cools relatively rapidly, significant contraction forces build up. While a flow can shrink in the vertical dimension without fracturing, it cannot easily accommodate shrinking in the horizontal direction unless cracks form; the extensive fracture network that develops results in the formation of columns. These structures are predominantly hexagonal in cross-section, but polygons with three to twelve or more sides can be observed. The size of the columns depends loosely on the rate of cooling; very rapid cooling may result in very small (<1 cm diameter) columns, while slow cooling is more likely to produce large columns

Submarine eruptions

The character of submarine basalt eruptions is largely determined by depth of water, since increased pressure restricts the release of volatile gases and results in effusive eruptions. It has been estimated that at depths greater than 500 metres (1,600 ft), explosive activity associated with basaltic magma is suppressed. Above this depth, submarine eruptions are often explosive, tending to produce pyroclastic rock rather than basalt flows. These eruptions, described as Surtseyan, are characterised by large quantities of steam and gas and the creation of large amounts of pumice

Pillow basalts

When basalt erupts underwater or flows into the sea, contact with the water quenches the surface and the lava forms a distinctive pillow shape, through which the hot lava breaks to form another pillow. This "pillow" texture is very common in underwater basaltic flows and is diagnostic of an underwater eruption environment when found in ancient rocks. Pillows typically consist of a fine-grained core with a glassy crust and have radial jointing. The size of individual pillows varies from 10 cm up to several metres.

When pāhoehoe lava enters the sea it usually forms pillow basalts. However, when ʻaʻā enters the ocean it forms a littoral cone, a small cone-shaped accumulation of tuffaceous debris formed when the blocky ʻaʻā lava enters the water and explodes from built-up steam.

The island of Surtsey in the Atlantic Ocean is a basalt volcano which breached the ocean surface in 1963. The initial phase of Surtsey's eruption was highly explosive, as the magma was quite fluid, causing the rock to be blown apart by the boiling steam to form a tuff and cinder cone. This has subsequently moved to a typical pāhoehoe-type behaviour.

Volcanic glass may be present, particularly as rinds on rapidly chilled surfaces of lava flows, and is commonly (but not exclusively) associated with underwater eruptions.

Pillow basalt is also produced by some subglacial volcanic eruptions

Source: wikipedia.org