Diagram of a Submarine eruption. (key: 1. Water vapor cloud 2. Water 3. Stratum 4. Lava flow 5. Magma conduit 6. Magma chamber 7. Dike 8. Pillow lava)

Submarine eruptions are a type of volcanic eruption that occurs underwater. An estimated 75% of the total volcanic eruptive volume is generated by submarine eruptions near mid ocean ridges alone, however because of the problems associated with detecting deep sea volcanics, they remained virtually unknown until advances in the 1990s made it possible to observe them.

Submarine eruptions may produce seamounts which may break the surface to form volcanic islands and island chains.

Submarine volcanism is driven by various processes. Volcanoes near plate boundaries and mid-ocean ridges are built by the decompression melting of mantle rock that rises on an upwelling portion of a convection cell to the crustal surface. Eruptions associated with subducting zones, meanwhile, are driven by subducting plates that add volatiles to the rising plate, lowering its melting point. Each process generates different rock; mid-ocean ridge volcanics are primarily basaltic, whereas subduction flows are mostly calc-alkaline, and more explosive and viscous.
Spreading rates along mid-ocean ridges vary widely, from 2 cm (0.8 in) per year at the Mid-Atlantic Ridge, to up to 16 cm (6 in) along the East Pacific Rise. Higher spreading rates are a probably cause for higher levels of volcanism. The technology for studying seamount eruptions did not exist until advancements in hydrophone technology made it possible to "listen" to acoustic waves, known as T-waves, released by submarine earthquakes associated with submarine volcanic eruptions. The reason for this is that land-based seismometers cannot detect sea-based earthquakes below a magnitude of 4, but acoustic waves travel well in water and long periods of time. A system in the North Pacific, maintained by the United States Navy and originally intended for the detection of submarines, has detected an event on average every 2 to 3 years.
The most common underwater flow is pillow lava, a circular lava flow named after its unusual shape. Less common are glassy, marginal sheet flows, indicative of larger-scale flows. Volcaniclastic sedimentary rocks are common in shallow-water environments. As plate movement starts to carry the volcanoes away from their eruptive source, eruption rates start to die down, and water erosion grinds the volcano down. The final stages of eruption caps the seamount in alkalic flows. There are about 100,000 deepwater volcanoes in the world,[40] although most are beyond the active stage of their life. Some exemplary seamounts are Loihi Seamount, Bowie Seamount, Davidson Seamount, and Axial Seamount.